Решение. 1 Изобразим числа на комплексной плоскости. При этом числу будет соответствовать точка, числу точка - страница 3




reshenie-tipovih-zadach-massovaya-dolya-ugleroda-v-okside-ravna-4286-kakova-valentnost-atoma-ugleroda-v-etom-okside.html
reshenie-tipovogo-varianta-stranica-2.html

Решение.

а) Сформулируем правило, позволяющее вычислять несобственные интегралы от рациональной функции действительного переменного с помощью теории функций комплексного переменного:

Пусть - рациональная функция, , где и - многочлены степени и соответственно. Если функция непрерывна на всей действительной оси и , т.е. степень знаменателя по крайней мере на две единицы больше степени числителя, то



где означает сумму вычетов функции по всем полюсам, расположенным в верхней полуплоскости.

Так как подынтегральная функция четная, то =. Построим функцию , которая на действительной оси (при ) совпадает с подынтегральной функцией . Особые точки функции - это точки и . Из них в верхней полуплоскости находится точка , которая является полюсом второго порядка. Вычет функции относительно полюса равен =. Так как в верхней полуплоскости только одна особая точка, то . Следовательно, =.

б) Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:

Пусть - рациональная функция, , где и - многочлены степени и соответственно. Если функция непрерывна на всей действительной оси, , - произвольное действительное число, то

;

где означает сумму вычетов функции по всем полюсам, расположенным в верхней полуплоскости.

Так как подынтегральная функция является четной, то =. Построим функцию = такую, что на действительной оси (при ) совпадает с : . Отметим, что при справедливо равенство . Функция имеет в верхней полуплоскости полюс первого порядка в точке . Вычет функции относительно этого полюса равен =. Следовательно, = и =.

в) Сформулируем правило, позволяющее вычислить определенный интеграл функции, зависящей рационально от тригонометрических функций с помощью теории функций комплексного переменного:

Пусть - рациональная функция аргументов и , и функция непрерывна внутри промежутка интегрирования. Полагаем , тогда , , , . В этом случае

=

где есть сумма вычетов функции относительно полюсов, заключенных внутри окружности .

В рассматриваемом интеграле применим подстановку и после преобразований получим: =. Внутри круга радиуса 1 с центром в начале координат содержится только одна особая точка подынтегральной функции - это точка , которая является полюсом второго порядка. Вычет функции относительно точки равен =. Следовательно, =.

Вариант №1

Задание 1.

а) Найти модуль и аргумент чисел = и =. Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) .

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Задание 4. Определить вид кривой

Задание 5. Построить область плоскости , определяемую данными неравенствами.

а) ;

б) .

Задание 6. Проверить, может ли функция быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Задание 7. Найти область плоскости , в которую отображается с помощью функции область : плоскости .

Задание 8. Найти все лорановские разложения данной функции по степеням . Указать главную и правильную части ряда.

а) =, ;

б) =, .

Задание 9. Функцию = разложить в ряд Лорана в окрестности точки .

Задание 10. Для функции найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

а) =;

б) =.

Задание 11. Вычислить интеграл от функции комплексного переменного:

;

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах.

а) ;

б) .

Задание 13. Вычислить интегралы с помощью вычетов.









Вариант №2

Задание 1.

а) Найти модуль и аргумент чисел = и =. Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) ;

б) ,.

Задание 3. Указать область дифференцируемости функции и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Задание 4. Определить вид кривой .

Задание 5. Построить область плоскости , определяемую данными неравенствами.

а) ;

б)

Задание 6. Проверить, может ли функция быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Задание 7. Найти область плоскости , в которую отображается с помощью функции область : плоскости .

Задание 8. Найти все лорановские разложения данной функции по степеням . Указать главную и правильную части ряда.

а) =, ;

б) =,

Задание 9. Функцию = разложить в ряд Лорана в окрестности точки .

Задание 10. Для функции найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

а) =;

б) =.

Задание 11. Вычислить интеграл от функции комплексного переменного:

;

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах.

а) ;

б) .

Задание 13. Вычислить интегралы с помощью вычетов.








Вариант №3

Задание 1.

а) Найти модуль и аргумент чисел = и = Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

б) Найти: , , .

Задание 2. Вычислить значение функции в точке , ответ представить в алгебраической форме комплексного числа:

а) , ;

б) , .
1 2 3 4 5 6 7 8 9 10 11 Задание 2.

mpedagog.ru