Решение 1 февраля 1999 г был понедельник. Каким днем недели было 1 марта 1999 г.? - страница 4




reshenie-tekstovih-zadach-s-pomoshyu-nok-i-nod-chisel-1.html
reshenie-tekushih-psihologicheskih-i-socialnih-problem-vich-inficirovannih-lyudej-ih-partnerov-chlenov-semej-i-sidelok.html

82. На окраску 3 кв. м пола уходит 50 г краски. Сколько краски уйдет на окраску пола в комнате площадью 12 кв. м?

Решение. 12 кв. м в четыре раза больше, чем 3 кв. м, а потому на них уйдет в четыре раза больше краски: 50 г x  4 = 200 г.

Ответ: 200 г.

83. Какая цифра в задаче на вычисление пропущена: (223 + 81912174 + 23__ + 345287) : 10?

Решение. Число, стоящее в скобках, должно делиться на 10, поэтому оно должно иметь на конце цифру 0. Эта цифра получится лишь в том случае, если число 23__ будет иметь на конце цифру 6.

Ответ: 6.

84. Имеется 9 кг песка и гиря в 250 г. Как в три взвешивания на чашечных весах отмерить 2 кг песка?

Ответ: 1) делим пополам 9 кг; на одной из чашек оказывается 4 кг 500 г; 2) делим пополам 4 кг 500 г; на одной из чашек оказывается 2 кг 250 г; 3) кладем на другую чашку гирю и приводим весы в равновесие, отсыпая с нее лишний вес; этот лишний вес и составит 2 кг.

85. Перерисуй по клеткам угол АВС.



86. Расшифруй ребус: х 340 х – х 9 х 2 = 51 х 20.

Решение. Достаточно написать пример столбиком, и все пропущенные цифры станут очевидными.

Ответ: 53402 – 1982 = 51420.

87. На сковородке помещается два блинчика. На обжаривание блинчика с одной стороны требуется 1 минута. Как за три минуты обжарить на этой сковороде три блинчика?

Ответ: обжарить два блинчика с одной стороны (одна минута), один блинчик перевернуть, второй снять и положить на его место третий (одна минута), положить на сковородку второй и третий (одна минута).

88. Матери и сыну в этом году вместе столько же лет, сколько отцу и дочери. Сохранится ли это соотношение на будущий год?

Решение. На будущий год все, о ком говорится в задаче, станут на 1 год старше. Значит, мать и сын вместе станут на 2 года старше; отец и дочь вместе станут на 2 года старше. Поэтому разность между их возрастами не изменится.

Ответ: да.

89. Илья стоит в хороводе. 3-й слева от Ильи тот же, что и 11-й слева. Сколько людей в хороводе?

Решение. Из условия ясно, что второй подсчет дает еще 8 человек – полный хоровод или полные два или полные четыре хоровода. Получается 8 или 4 или 2 человека. Но 2 человека – это не хоровод.

Ответ: 8, или 4.

90. Магазин получил со склада 1000 линеек. Одни из них имеют длину 20 см, а другие 30 см. Общая длина линеек 220 м. Сколько 20-сантиметровых линеек получил магазин?

Решение.Какова была бы общая длина линеек, если бы все они были 20-сантиметровыми?
20 cм x 1000 = 20000 см = 200 м.
2) Какова лишняя общая длина, имеющаяся потому, что среди линеек есть 30-сантиметровые?
220 м – 200 м = 20 м.
3) На сколько 30-сантиметровая линейка длиннее 20-сантиметровой?
30 – 20 = 10 (см).
4) Сколько линеек – 30-сантиметровые?
20 м : 10 см = 2000 см : 10 см = 200.
5) Сколько линеек – 20-сантиметровые?
1000 – 200 = 800.

Решение полезно проверить:

Какова общая длина 30-сантиметровых линеек
30 см x 200 = 6000 см = 60 м.
Какова общая длина 20-сантиметровых линеек
20 см x 800 = 16000 см = 160 м.
3) Какова общая длина всех линеек?
60 + 160 = 220 (м).

Ответ: 800.

91. В субботу в 3 классе должно состояться четыре урока: русский язык, математика, труд и природоведение. Сколькими способами можно определить порядок следования этих предметов?

Решение. На первое место можно поставить любой из 4 уроков, на второе – любой из 3 оставшихся. Значит, первые два урока определяются 4 x 3 = 12 способами. В любом из них третье место можно занять двумя способами, итого 24 способа. Последний урок определяется автоматически.

Ответ: 24.

92. Если намотать 3 м веревки на катушку, получится 100 витков. Сколько витков получится, если намотать полтора метра? 12 метров?

Решение. Полтора метра вдвое меньше, чем 3 метра, поэтому полтора метра дадут нам 50 витков. 12 м вчетверо больше, чем 3 м, они намотаются в 400 витков.

Ответ: 50 витков. 400 витков.

93. Человек отвечает на вопросы только "да" или "нет" и имеет право один раз ответить неправду. После нескольких вопросов его спросили: "Ты уже соврал?", и он ответил "Да". Остается ли за ним право соврать при ответите на следующие вопросы?

Решение. Может быть, он соврал при ответах на предыдущие вопросы, и на последний вопрос ответил правду. А может быть, он не врал при ответах на предыдущие вопросы и соврал в ответе на последний вопрос. В любом случае он при последующих ответах не может врать.

Ответ: нет.

94. Две мухи соревнуются в беге. Они бегут от пола к потолку и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее, чем первая, а вверх – вдвое медленнее, чем первая. Которая из мух победит?

Решение. Нужно нарисовать первый этап соревнования: первая муха достигает потолка, когда вторая на половине пути к нему; первая возвращается к полу, когда вторая достигает потолка. Побеждает первая. Заметим, что несущественно, во сколько раз быстрее вторая муха ползет вниз, чем первая.

Ответ: первая.

95. Перерисуй по клеткам фигуру АВСD. Убедись, что АВСD – квадрат, то есть что все его стороны равны между собой и все углы – прямые.



96. Расшифруй ребус: 6 х 21 + 2 хх = х 958.

Решение. Достаточно написать пример столбиком, и все пропущенные цифры станут очевидными.

Ответ: 6721 + 237 = 6958.

97. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 6, 28, 145.

Решение. Второе число получается из первого так: прибавляем 1 и умножаем на 3. Третье из второго – прибавляем 1 и умножаем на 4. Четвертое из третьего – прибавляем 1 и умножаем на 5. Можно и дальше действовать так же, прибавляя к предыдущему числу 1 и умножая результат на множитель, увеличенный на 1.

Ответ: 1, 6, 28, 145, 876, ...

98. Две мухи соревнуются в беге. Они бегут от потолка к полу и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее первой, а вверх вдвое медленнее первой. Которая победит?

Решение. Достаточно попросить мух бежать в другом порядке – как в задаче 95. От этого их скорости не изменятся, а значит, не изменится и время бега. Впрочем, можно проследить ход соревнования и в данном порядке. Пока первая муха достигнет середины стены, вторая будет уже на полу. На обратном пути вторая муха пробежит четверть стены, пока первая достигнет пола. Первой останется бежать вверх целую стену, а второй – три четверти стены. Но скорость первой мухи теперь в два раза больше, и она успевает к цели раньше.

Ответ: первая.

99. Какое число пропущено в следующем равенстве?

(429 – __) : (348 + 259) = 0.

Решение. Так как частное равно нулю, то делимое равно нулю. Получается, что 429 – ___ = 0, а значит, пропущено число 429.

Ответ: 429.

100. 1 сентября 2001 г. – суббота. Какой день недели 1 сентября 2002 г.? Сделайте более общий вывод.

Решение. В данной задаче нужно выяснить:

1) сколько дней между 1 сентября 2001 г. и 1 сентября 2002 г. (так как эти годы невисокосные, то 365 дней);
2) каким днем является день "суббота + 365 дней" (так как 365 дней – это 52 недели плюс один день, то "суббота + 365 дней" – это воскресенье).

Ответ: 1 сентября 2002 г. – воскресенье. Более общий вывод: невисокосный год продвигает календарь на один день недели.

101. В субботу в 3 классе должно состояться четыре урока: два урока русского языка, математика, и природоведение. Сколькими способами можно определить порядок следования этих предметов?

Решение. Лучше всего выписать все возможные расписания, вначале начинающиеся с РР, потом с РМ, потом с РП, потом с МР, потом с МП, потом с ПР, потом с ПМ:
РРМП, РРПМ, РМРП, РМПР, РПРМ, РПМР, МРРП, МРПР, МПРР, ПРРМ, ПРМР, ПМРР.
Можно рассуждать и иначе: назвать уроки русского языка Р1 и Р2, составить 24 расписания, как в задаче 92, а затем заявить, что уроков будет вдвое меньше, так как Р1 и Р2 друг от друга не отличаются.

Ответ: 12.

102. 50 г сахара растворили в 1 литре воды. От этой воды отлили один стакан вместимостью 200 г. Сколько сахара в этом стакане?

Решение. Так как сахар растворен, то можно считать, что в равных количествах воды содержатся равные количества сахара. Чтобы решить задачу, нужно вычислить, какую часть всей воды составляет один стакан. 1 л воды имеет массу 1 кг, а потому в первом действии следует разделить 1 кг на 200 г.
1 кг : 200 г = 1000 г : 200 г = 5, поэтому один стакан составляет одну пятую часть литра. Значит, и сахара в стакане одна пятая часть, то есть в стакане содержится 50 г : 5 = 10 г.

Ответ: 10 г.

103. Какая цифра в задаче на вычисление пропущена:

(438 + 5681175 + 673__ + 3487897) : 10?

Решение. См. задачу 84.

Ответ: 0.

104. Какой вес можно отмерить гирями 1, 2, 4 и 8 г, если класть гири только на одну чашу весов?

Ответ: любой от 1 до 15 г.

Замечание для учителя: эти числа – степени числа 2. Продолжая этот ряд гирь, мы получим возможность минимальным числом гирь отмеривать любые веса, используя для гирь одну чашку весов.

105. Двое одновременно отправились из А в В. Первый поехал на велосипеде, второй – на автомобиле со скоростью, в 5 раз большей скорости первого. На полпути автомобиль сломался, и оставшуюся часть пути автомобилист прошел пешком со скоростью, в два раза меньшей скорости велосипедиста. Успел ли велосипедист помахать ручкой автомобилисту?

Решение. Вторую половину пути автомобилист шел столько же времени, сколько потребовалось велосипедисту на весь путь. Значит, автомобилист прибыл в Б позже велосипедиста как раз на то время, за которое он проехал первую половину пути. То есть вначале он намного обогнал велосипедиста, а к концу пути велосипедист обогнал его, пешего.

Ответ: да.

106. Расшифруй ребус: хххх – ххх = 1.

Решение. Разность двух чисел равна единице, если это – соседние числа. Значит, нужно найти два соседних числа, одно из которых трехзначное, а другое четырехзначное. Это числа 999 и 1000.

Ответ: 1000 – 999 = 1.

107. Коля считает, что если сумма первых трех цифр номера автобусного билета равна сумме последних трех цифр, то билет – счастливый. Билет с номером 995995 – счастливый. Какие два ближайших к нему билета тоже счастливые?

Решение. Сумма первых трех цифр равна 9 + 9 + 5 = 23, и эти цифры долго не менялись. Менялись последние цифры, но их сумма должна была также равняться 23. Первая из этих трех цифр 9 долго не менялась. Значит, нужно, чтобы сумма двух последних цифр равнялась 14. Перед числом 95 такое ближайшее число 86. Что касается следующего за данным счастливого билета, то у него сумма последних цифр уже не будет равняться 23, так как у чисел 996, 997, 998 и 999 сумма цифр от 24 до 27, а после 999 сумма цифр 0, 1 и так далее. Первое число с суммой цифр 23 будет 599.

Ответ: 995986 и 995599.

108. Имеются 8 монет. Возможно, что одна из них фальшивая (отличается от других по весу). Имеются чашечные весы. Сколько взвешиваний тебе понадобится, чтобы выяснить, есть ли среди монет фальшивая?

Решение. Достаточно положить на одну чашу весов четыре монеты, а на другую – другие четыре монеты. Если весы придут в равновесие, то фальшивых монет нет. В противном случае фальшивая монета имеется.

Ответ: одно.

109. В следующем тексте есть слово "Я". Шифр такой же, как у Цезаря, но сдвиг сделан не на 3 знака. Расшифруй текст.

Г – УТХПИЗСГГ ЕЧОЕД Е ДПЧДЕМЦИ.

Решение. Слово Я – это либо Г, либо Е. Если Е расшифровывается как Я, то Г расшифровывается как Ь. Но тогда первое слово фразы – Ь, что невозможно. Остается положить, что Я зашифровано буквой Г.

Ответ: Я – ПОСЛЕДНЯЯ БУКВА В АЛФАВИТЕ.

110. Для перенумерования страниц книги (со второй страницы до последней) потребовалось ровно 100 цифр. Сколько страниц в этой книге?

Решение. На первые 9 страниц потребовалось 8 цифр (так как на первую страницу номер не ставился. Остальные 92 цифры потребовались на двузначные номера, то есть на 46 страниц книги. Значит, в книге 9 + 46 = 55 страниц.

Ответ: 55.

111. В одном колесе 18 зубцов, а в другом, зацепленном с ним, 30 зубцов. Первое колесо сделало 15 оборотов. А второе?

Решение. Это трудная задача. Нужно нарисовать на доске два зубчатых колеса: большое и маленькое. Первое должно быть примерно в два раза больше второго. Теперь нужно сосредоточить внимание на их единственной общей точке – точке зацепления (назовем ее точкой А). В то время, когда через точку А проходит один зубец первого колеса, через ту же точку проходит один зубец второго колеса. То есть за одно и то же время через точку А проходит одинаковое число зубцов первого и второго колес. Задача решается в несколько вопросов.
Сколько зубцов первого колеса прошло через точку А за 15 оборотов этого колеса?
15 x 18 = 270.
Сколько зубцов второго колеса прошло через точку А за то же время?
Столько же, 270.
Сколько оборотов должно сделать второе колесо, чтобы через точку А прошло 270 его зубцов?
270 : 30 = 90.

Ответ: 90 оборотов.

112. Имеются 8 монет. Одна из них фальшивая (отличается от других по весу). Имеются чашечные весы. Сколько взвешиваний тебе понадобится, чтобы узнать, легче или тяжелее фальшивая монета, чем настоящая?

Решение. Первым взвешиванием сравниваем две четверки монет. Вторым взвешиванием сравниваем две пары монет из какой-нибудь четверки. Если во втором взвешивании весы уравновесились, то фальшивая монета – среди другой четверки, а если нет, то она – во взвешиваемой четверке. Тем самым становится ясно, легче она или тяжелее, чем настоящая.

Ответ: два.

113. Можно ли выложить, соблюдая правила игры в домино, все косточки так, чтобы на одном конце оказалась шестерка, а на другом – пятерка?

Решение. В комплекте косточек домино семь косточек имеют шестерку: 0-6, 1-6, 2-6, 3-6, 4-6, 5-6 и 6-6. Если цепочка начинается с одной из шестерок (не считая косточки 6-6), то еще четыре косточки следуют парами и остается одна незакрытая шестерка, которая и должна завершать цепочку. При этом косточка 6-6 может стоять где угодно между двумя другими шестерками или на конце цепочки.

Ответ: нет.

114. Перерисуй по клеткам треугольник АВС.



115. Расшифруй ребус: АР + РАК = АКР.

Решение. Перепишем ребус столбиком:



Так как Р + К = Р, то К = 0. Теперь ребус приобретает такой вид:



Отсюда А = 5, а Р = 4.

Ответ: 54 + 450 = 504.

116. Расставь круглые числа от 20 до 100 в девяти клетках этого квадрата, чтобы суммы чисел по всем горизонталям, вертикалям и диагоналям равнялись между собой. Сколько таких размещений можно придумать?

Решение. см. задачу 59. Центр заполняется однозначно числом 60, так как это единственное число, входящее в четыре тройки, дающие в сумме 180, а центральная клетка входит в один столбец, в одну строку и в две диагонали, то есть участвует в трех суммах.
Верхний левый угол можно заполнить любым из чисел 30, 50, 70 и 90, так как каждое из этих чисел входит в три тройки. После этого нижний правый угол заполняется однозначно.
Верхний правый угол заполняется одним из двух оставшихся чисел, входящих в три тройки, после чего весь квадрат заполняется однозначно.

Ответ: Восемь возможных квадратов:



117. Знаешь ли ты, что среди всех пород кошачьих только гепарды не втягивают когти. Когти у них всегда снаружи, как у собак. Среди обитателей площадки молодняка в зоопарке 18 – котята и щенята разных пород. Из них 9 – щенята, а 13 не втягивают когти. Сколько обитателей – гепарды и сколько котят других пород?

Решение. Среди 13 малышей, не втягивающих когти, 9 – щенята, значит, 4 – гепарды. Котят других пород 18 – (9 + 4) = 5.

Ответ: 5.

118. Какое число пропущено в следующем равенстве? 844 + 289 – ___ = 289.

Ответ: 844.

119. 1 сентября 2003 г. – понедельник. Какой день недели 1 сентября 2004 г.? Сделайте более общий вывод.

Решение. В данной задаче нужно выяснить:
1) сколько дней между 1 сентября 2003 г. и 1 сентября 2004 г. (так как эти 2004 год високосный, то 366 дней);
2) каким днем является день "понедельник + 366 дней" (так как 366 дней – это 52 недели плюс два дня, то "понедельник + 366 дней" – это среда).

Ответ: 1 сентября 2004 г. – среда. Более общий вывод: високосный год продвигает календарь на два дня недели вперед.

120. За 3 часа автобус проходит 200 км. Сколько километров проходит этот автобус за 6 часов с той же скоростью?

Решение. 6 часов вдвое больше, чем 3 часа, поэтому автобус пройдет за 6 часов вдвое больший путь, чем за 3 часа, то есть за 6 часов он пройдет 200 км x 2=400 км.

Ответ: 400 км.

121. Какая цифра в задаче на вычисление пропущена: (78534 – 7853___) : 5?

Решение. Чтобы число, стоящее в скобках, делилось на 5, оно должно оканчиваться либо на 5, либо на 0. Для этого вычитаемое должно оканчиваться либо на 9, либо на 4. Однако, если бы вычитаемое оканчивалось на 9, то оно было бы больше уменьшаемого.

Ответ: 4.

122. Какими четырьмя гирями можно отмерить любой вес от 1 до 40 г, если класть гири на обе чаши весов?

Решение. Чтобы взвесить 1 г, возьмем гирю в 1 г. Чтобы взвесить 2 г, возьмем гирю не в 2 г, а сразу в 3 г. Тогда можно будет взвесить также и 3 г, и 4 г. Следующий вес – 5 г. Возьмем наибольшую возможную для этого гирю – 9 г. Тогда 5 г получится как 9 – (1+3), а кроме того можно будет отмерить любой вес от 6 до 13 г (6 = 9–3, 7 = 9+1–3; 8 = 9–1 и т.д. до 13=1+3+9). Нам можно взять еще одну – четвертую – гирю. Возьмем ее побольше, но чтобы с ее помощью можно было взвесить 14 г. Так как у нас есть возможность отмерить 13 г, то возьмем четвертую гирю в 27 г. Тогда 14 г получится как 27 – 13. Легко проверить, что взятыми четырьмя гирями можно отмерить любой вес от 1 до 40 г. (1+3+9+27 = 40).

Ответ: 1 г, 3 г, 9 г, 27 г.

Замечание для учителя: эти числа – степени числа 3. Продолжая этот ряд гирь, мы получим возможность с помощью минимального набора гирь отмеривать любые веса.

123. Перерисуй по клеткам треугольник АВС, а потом и весь рисунок.



124. Расшифруй ребус: УДАР + УДАР = ДРАКА.

Решение. Перепишем ребус столбиком:



Ясно, что первая цифра суммы Д = 1, так как сумма двух четырехзначных чисел не может превышать 19999. Ребус приобретает такой вид:



Третья цифра суммы А равна либо 2, либо 3. Однако, цифра А стоит в конце суммы и получается от сложения двух равных чисел Р. Значит, А – четная цифра, она не 3, а 2. Снова перепишем ребус:



Сумма Р + Р может дать на конце двойку в двух случаях: при Р = 1 и при Р = 6. Однако, Р = 1 невозможно, поскольку Д = 1. Значит, Р = 6, К = 5, а У либо 3, либо 8. Но так как сумма пятизначная, то У = 8.

Ответ: 8126 + 8126 = 16252.

125. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 2, 6, 24, 120, 720.

Решение. Второе число получается из первого умножением на 2, третье из второго умножением на 3 и т.д.

Ответ: 1, 2, 6, 24, 120, 720, 5040, ...

126. По круговой беговой дорожке длиной 400 м бегут Андрей и Виктор. Андрей бежит быстрее и обгоняет Виктора через каждые 12 минут. Через 36 минут после начала бег был прекращен. Кто пробежал больше и на сколько?

Решение. Андрей пробежал больше, чем Виктор, так как бежал то же время с большей скоростью. За каждые 12 минут Андрей пробегает на 1 круг больше, чем Виктор. Значит, за 36 минут Андрей пробежал на 3 круга больше, а три круга – это 1200 м.

Ответ: Андрей пробежал больше на 1200 м.

127. Сумма и произведение четырех чисел равны 8. Что это за числа?

Решение. Осуществляется подбором:

1 + 1 + 2 + 4 = 1 x 1 x 2 x 4

Ответ: 1, 1, 2 и 4.

128. Сколькими способами можно расставить на полке томики стихов Пушкина, Лермонтова, Некрасова, и Маяковского, чтобы Пушкин стоял на первом месте, а Некрасов и Маяковский стояли рядом?

Решение. Свяжем томики Некрасова и Маяковского. Тогда получится три объекта: томик Пушкина, томик Лермонтова и связка из двух томиков. На первое место ставим, как требуется в задаче, томик Пушкина. Тогда на второе место можно поставить либо томик Лермонтова, либо связку. Так что имеется всего две возможности. Но связку можно было сделать двумя способами: первым Маяковского или первым Некрасова. Значит, возможностей всего четыре. Вот они: ПЛНМ, ПЛМН, ПНМЛ, ПМНЛ.

Ответ: 4.

129. Одно колесо телеги в 3 раза больше другого. Большое колесо сделало в течение пути 1000 оборотов. А второе?

Решение. Пока большее колесо сделает один оборот, меньшее сделает три оборота. Значит, пока большее колесо сделает 1000 оборотов, меньшее колесо сделает 1000 x 3 = 3000 оборотов.

Ответ: 3000.

130. Человек отвечает на вопросы только "да" или "нет" и имеет право один раз ответить неправду. В сколько вопросов можно отгадать задуманное им число от 1 до 4?

Решение. Можно каждый вопрос повторять. В том единственном случае, когда ответы будут разными, придется задать тот же вопрос в третий раз.

Ответ: не более 5 вопросов.

131. Имеются 8 монет. Одна из них фальшивая, более легкая. Имеются чашечные весы. Сколько взвешиваний тебе понадобится, чтобы найти эту монету?

Решение. Первым взвешиванием сравниваем две четверки монет. Вторым взвешиванием сравниваем две пары монет из более легкой четверки. Третьим взвешиванием сравниваем монеты из более легкой пары. Более легкая монета – фальшивая.

Ответ: три.

132. Перерисуй половину и дорисуй целое.



133. Расшифруй ребус: КТО + КОТ = ТОК.

Решение. Перепишем ребус столбиком:



Так как под О + Т и Т + О стоят разные цифры, то О + Т больше 10. Из второго столбика получаем, что Т + О + 1 = = О + 10, откуда Т = 9. Теперь ребус приобретает такой вид:



Из первого столбика теперь видно, что К = 4, а значит, из третьего столбика получаем, что О = 5.

Ответ: 495 + 459 = 954.

134. В кувшине впятеро больше воды, чем в чайнике, а в чайнике на 8 стаканов воды меньше, чем в кувшине. Сколько воды в кувшине?

Решение. Начертим два отрезка, один из которых впятеро больше другого, и обозначим числом 8 их разность:



Во втором отрезке одна часть, тогда в первом отрезке пять частей, и четыре части равны 8 стаканам. Отсюда следует, что в одной части 2 стакана, а в пяти частях их 10.

Ответ: 10 стаканов.

135. Улитка ползет по столбу высотой 20 м. Каждый день она поднимается на 2 м и каждую ночь опускается на 1 м. Через сколько дней она достигнет вершины?

Решение. Иногда говорят, что улитка каждые сутки поднимается на 1 м, а значит, ей понадобится 20 дней. Однако после 18 суток она поднимется на 18 м и за следующий, девятнадцатый день поднимется еще на 2 м и достигнет вершины.

Ответ: 19 дней.

136. Какое число пропущено в следующем равенстве? (445 + 896 + 978) x __ = 0.

Ответ: 0.

137. 1 января 1995 г. было воскресенье. Какой день недели был 1 января 1996 г. А 1 января 1997 г.?

Ответ: понедельник; среда.

138. Сколько можно расставить на шахматной доске ладей, чтобы ни одна из них не угрожала другой?

Решение. Ладья ходит и бьет по горизонталям и вертикалям. Например, положение двух ладей на этом рисунке такое, как требуется,



а на этом рисунке – не такое:



две ладьи на нем бьют друг друга. Ясно, что нельзя расставить больше восьми ладей, как требуется в задаче, так как на шахматной доске всего восемь горизонталей. А восемь ладей можно расставить по-разному: так,



и так,



и еще многими способами.

139. Два туриста делали на завтрак бутерброды. К ним подошел третий турист, и они дали ему поесть: первый дал ему 3 бутерброда, а второй 2 бутерброда. Третий турист заплатил за угощение 10 р. Как должны были разделить между собой эти деньги первые два туриста?

Решение. Третий турист съел 5 бутербродов и заплатил за них 10 р. Значит, за каждый бутерброд он заплатил 2 р. Поэтому первому туристу причитается 6 рублей, а второму 4 р.

Ответ: первому туристу – 6 р, второму – 4 р.

140. Какая цифра в задаче на вычисление пропущена: (85698 – 424__) : 10?

Ответ: 8.

141. Какой вес можно взвесить одной гирей в 1 г и любым количеством гирь в 2 г, если класть гири только на одну чашу весов?

Решение. Любое нечетное число граммов отмеривается гирями в 2 г и в 1 г, а любое четное число – гирями в 2 г.

Ответ: любой.

142. Расшифруй ребус: БРА + БАР = РАБ.

Решение. См. задачу 137.

Ответ: 495 + 459 = 954.

143. Как определить высоту кирпичного дома, имея в руках только линейку длиной 30 см?

Ответ: измерить толщину одного кирпича и слоя извести и умножить результат на число кирпичных слоев в доме.

144. Дедушке 56 лет, а его внучке 14. Через сколько лет дедушка будет вдвое старше внучки?

Решение. С годами меняется возраст дедушки и внучки, но не меняется разность их возрастов. Дедушка всегда будет старше внучки на 56 – 14 = 42 года. Значит, можно нарисовать их возрасты в интересующий нас момент двумя отрезками, один из которых больше другого на 42 и в то же время в 2 раза:



Из рисунка сразу следует, что в тот момент дедушке будет 84 года, а внучке 42 года. Осталось выяснить, через сколько лет это произойдет. Для этого достаточно вычесть из 84 лет нынешний возраст дедушки или из 42 нынешний возраст внучки.

Ответ: через 28 лет.

145. Если в 12 часов ночи идет дождь, то можно ли надеяться, что через 72 часа будет солнечная погода?

Решение. Это задача-шутка. Через 72 часа пройдут ровно трое суток, и опять будет ночь, так что солнца не будет.

Ответ: нет.

146. В театре билеты продаются по цене 30 р. и 40 р. Всего в театре 12 рядов по 25 мест в каждом ряду. Общая стоимость всех билетов равна 10000 р. Сколько билетов продается по 40 р.?

Решение.

1) Сколько всего мест в театре?
25 x 12 = 300.
2) Какой была бы общая стоимость билетов, если бы все они были 30-рублевые?
30 x 300 = 9000 (р.).
3) Сколько лишних рублей получается потому, что среди билетов есть 40-рублевые?
10000 – 9000 = 1000 (р.).
4) На сколько 40-рублевый билет стоит дороже, чем 30-рублевый?
40 – 30 = 10 (р.).
5) Сколько билетов 40-рублевые?
1000 : 10 = 100.

Решение полезно проверить:

Сколько билетов 30-рублевые?
300 – 100 = 200.
Сколько стоят все 40-рублевые билеты?
40 x 100 = 4000 (р.).
Сколько стоят все 30-рублевые билеты?
30 x 200 = 6000 (р.).
Сколько стоят все билеты?
4000 + 6000 = 10000 (р.).

Ответ: 100.

147. Сколькими способами можно рассадить на три кресла трех людей?

Решение. На первое кресло можно посадить любого из трех человек, после этого на второе кресло можно посадить любого из двух оставшихся, итого первых двух человек можно посадить шестью способами. Третий человек сядет в оставшееся кресло. Так что всего способов шесть. Желательно нарисовать все эти способы на доске и в тетрадях:

1, 2, 3; 1, 3, 2; 2, 1, 3; 2, 3, 1; 3, 1, 2; 3, 2, 1.

Ответ: 6.

148. Два туриста варили в котле похлебку. Один положил в нее 3 пакета питательных веществ, а другой 5 пакетов. К ним подошел еще один турист, и они втроем всю похлебку съели. Третий турист заплатил за угощение 8 р. Как должны были разделить между собой эти деньги первые два туриста?

Решение. Это трудная задача.
Ответ: "первому туристу – 3 р., второму – 5 р." – неверен. Правильно разделить деньги так: "Первому туристу –1 р., второму – 7 р.". Дело в том, что первые два туриста тоже ели похлебку. Первый съел одну треть похлебки, второй одну треть и третий одну треть. 8 р., которые заплатил третий турист – стоимость одной трети похлебки. Значит, вся похлебка стоила 24 р. Каждый пакет питательный веществ поэтому стоил 3 р. Первый турист съел похлебки на 8 рублей, а положил 3 пакета, то есть вложил в общую еду 9 р. Ему полагается 1 р. Второй турист вложил 5 пакетов, то есть 15 р., а съел похлебки на 8 р. Ему полагается 7 р.

Ответ: первому – 1 р., второму – 7 р.

149. 16 волейбольных команд играют между собой по олимпийской системе. В 1/8 финала встречаются все команды по парам; проигравшие выбывают, остается 8 команд-победителей. В 1/4 финала эти команды встречаются между собой по парам, проигравшие выбывают, остается 4 команды. В 1/2 финала эти команды встречаются между собой по парам. Остаются 2 команды. Они встречаются в финале. Сколько матчей при этом происходит?

Решение. Всего из 16 команд выбыло 15. Каждая из них выбыла после одной проигранной встречи. Значит, всего встреч – 15.

Ответ: 15.

150. В корзине яблоки трех сортов. Сколько яблок нужно вынуть из корзины, не заглядывая в нее, чтобы среди них оказалось хотя бы 3 яблока одного сорта?

Решение. Может быть, нам повезет, и первые же три яблока окажутся одного сорта. Но может, и не повезет, и мы вынем целых шесть яблок по два каждого сорта. Но седьмое яблоко будет уже одного сорта с какими-нибудь двумя, вынутыми раньше.

Ответ: От трех до семи.

151. Нарисуй обе половинки одинаково.



152. Расшифруй ребус: Я x ЛЯ = ОЛЯ.

Решение. От умножения Я на Я получается число, оканчивающееся на Я. Это возможно, если Я равно 0, 1, 5 или 6. Я = 0 не может быть, так как от умножения нуля на любое число должен получиться нуль, а умножение Я на ЛЯ дало не Я, а ОЛЯ. Я = 1 не может быть, так как от умножения единицы на любое число должно получиться это число, а умножение Я на ЛЯ дало не ЛЯ, а ОЛЯ. Остается проверить Я = 5 и Я = 6.
Если Я = 5, то ребус выглядит так: 5 x Л5 = ОЛ5. Приходится проверять все значения Л, кроме 0 и 5. Получаем два подходящих результата: 5 x 25 = 125 и 5 x 75 = 375.
Если же Я = 6, то ребус выглядит так: 6 x Л6 = ОЛ6. Это невозможно. Убедиться в этом можно последовательной проверкой всех Л, кроме 0 и 6. Но можно доказать это и короче. Ведь если умножить 6 на Л6, то получится 60Л + 36. Значит, цифра десятков в произведении должна быть тройкой, и достаточно проверить только Л = 3.

Ответ: 5 x 25 = 125 или 5 x 75 = 375.

153. Кота Барсика посадили в подвал за дурное поведение. Барсик питался там одними мышами. Он поймал их за 4 дня 80 штук. При этом его мастерство день ото дня возрастало, и он каждый день ловил столько мышей, сколько во все предыдущие дни вместе. Сколько мышей поймал Барсик в каждый из этих четырех дней?

Решение. В четвертый день он поймал столько же, сколько во все предыдущие дни. Значит, в четвертый день он поймал половину всех мышей. И так далее.

Ответ: 10, 10, 20, 40.

154. В корзине носки двух цветов одного размера. Сколько носков нужно вынуть из корзины, не заглядывая в нее, чтобы среди них оказалась хотя бы одна пара носков?

Решение. Может быть, нам повезет, и первые же два носка окажутся одного цвета. Но может, и не повезет, и мы вынем два носка разного цвета. Но третий носок будет уже одного цвета с каким-нибудь, вынутым раньше.

Ответ: от двух до трех.

155. Чтобы умножить число 52 на 11, достаточно вставить между цифрами 5 и 2 их сумму 7 : 52 x 11 = 572. Объясни, почему это верно. Придумай еще примеры. Как быть в случае, если сумма цифр больше, чем 9?

Решение. Для объяснения достаточно умножить 52 на 11 столбиком. Сразу видно, что сумма 5 + 2 вставляется между цифрами 5 и 2. Если сумма цифр больше, чем 9, к разряду сотен добавляется единица.

156. 2001 г. начался с понедельника. С какого дня недели будет начинаться 2002 г.? 2003 г.? 2004 г.? 2005 г.?

Ответ: со вторника; со среды; с четверга; с субботы.

157. К Новому году четырем сестрам-близнецам подарили четыре разные игрушки. Сколькими способами они могут разделить их между собой?

Решение. Первой сестре может достаться любая игрушка, после этого второй сестре может достаться любая из трех оставшихся игрушек. Значит, первые две сестры могут получить игрушки 4 x 3 = 12 разными способами. В каждом из этих 12 случаев третья сестра может получить одну из двух оставшихся игрушек, так что первые три сестры могут получить игрушки 24 способами. Четвертой сестре достанется единственная оставшаяся игрушка.

Ответ: 24.

158. 12 вилок стоят 325 руб. 25 коп. Сколько стоят 36 таких вилок?

Решение. 36 вилок стоят втрое больше, чем 12 вилок, то есть 975 руб. 75 коп.

Ответ: 975 руб. 75 коп.

159. Какая цифра в задаче на вычисление пропущена:

(42591 – 4259__) : 2?

Решение. см. задачу 124.

Ответ: 1.

160. Какой вес можно взвесить одной гирей в 3 г и любым количеством гирь в 2 г, если класть гири на обе чаши весов?

Решение. Любое нечетное число граммов отмеривается гирями в 2 г и в 3 г, а любое четное число – гирями в 2 г.

Ответ: Любой.

161. Расшифруй ребус: ВАР x Р = ДАР

Решение обычно осуществляется подбором.

Ответ: 125 x 5 = 625.

162. В корзине 12 пар перчаток одного цвета, размера и качества. Сколько перчаток нужно вынуть из корзины, не заглядывая в нее, чтобы среди них оказалась хотя бы одна пара перчаток?

Решение. Может быть, нам повезет, и первые же две перчатки подойдут друг к другу. Но может, и не повезет, и мы вынем 12 левых или 12 правых перчаток. Но тринадцатая перчатка будет уже на другую руку и образует пару с перчаткой, вынутой раньше.

Ответ: от двух до тринадцати.

163. Пес Тузик на 12 кг тяжелее кота Барсика, а Барсик вчетверо легче Тузика. Сколько весит Барсик?

Решение. Начертим два отрезка, один из которых вчетверо больше другого, и обозначим числом 12 их разность:



Во втором отрезке одна часть, тогда в первом отрезке четыре части, и три части равны 12 кг. Отсюда следует, что в одной части 4 кг, а в четырех частях их 16.

Ответ: 4 кг.

164. Сколько существует пятизначных чисел, записываемых двумя единицами и тремя двойками?

Решение. Если мы из имеющихся пяти мест займем два места единицами, то двойки расставятся сами собой на оставшиеся места. Поэтому достаточно выяснить, сколько существует способов выбрать два места из пяти. Перечислим эти места для единиц и напишем рядом получающиеся числа:

1-е и 2-е: 11222; 1-е и 3-е: 12122; 1-е и 4-е: 12212; 1-е и 5-е: 12221; 2-е и 3-е: 21122; 2-е и 4-е: 21212; 2-е и 5-е: 21221; 3-е и 4-е: 22112; 3-е и 5-е: 22121; 4-е и 5-е: 22211.

Ответ: 10.
1 2 3 4 5 6 7 8 9 10 11 85.

mpedagog.ru